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and the assignment problem. The particular procedurcs which were used in the BASIC
program for the ADP are not nceessarily the most efficient.
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3. Conclusions, Remarks and Extensions

This research has proposed two heuristic methods for solving the MTSP with balancing
workloads. Balancing workloads can be described by two criteria: (1) minimizing the maximal
tour and (2) minimizing the range among tours. The secondary objective of minimizing the
total distance is also considered. Discussion of results in scelion 4 showed that sometimes it is
difficult to optimize these objectives simultaneously. For instance, the ADP usually provides a
better solution of minimizing (he total distance and the maximal tour while the ALH provides
a solution with smaller range among tours. The choice of solution technique will depend on the
priority or weighting factor of each objective. This can be defined (rom observations and
investigation of the real world problem or the opportunity cost compared with the lower bound
of each ohjective. Computational time is also a constraint, especially in a dynamic system
where the problem may change (as new jobs are added) before the solution can be
implemented. For this reason, the ADP, in some cascs, may not be appropriate when the
problem becomes large. Fxperiments with real data also help to justify the sclection between
methods,

All experimentation in this research have been done by microcomputers which is
considerably a cheaper investment comparing with using a mini or main frame computer. We
have been able to solve an intermediate scale model of 50 Jobs and 5 vehicles in a rcasonable
time in some cases.

Another point which should be mentioned is the fact that the cost matrix in FMIIS is
asymmetric. This is the reason why we havc been able to applied the modified Castman's
algorithm in the ADP successfully. For a symmetrical cost matrix, the method described in
Held and Karp (1970, 1971) is probably a better approach in solving the MTSP for the ADP.

Extension of this rescarch could be conducted in the following ways. First, both the ADP
and the AEH can be modified to handle capacity and demand constraints ot the VRP. An area
of application would be the multiple unit load FMIIS which allows each vehicle to have a
multi-unit load capacity. The AEH could be modified easily by adding a routine to detect the
tour which violates the capacity constraints as an infeasible tour. A modification of the ADP
could be made to change the MTSP to the VRP and find an appropriate method for solving the
VR, The method in Stewart and Golden (1984) would be one possibie choice.

An interactive inleger programming approach could be tested to provide a better solution
and provide a4 better lower bound than those used in section 4. ‘The integer linear program in
section L1 could be reformulated as a goal program and solved by modifying methods
described in Groschel (1980) and Padberg and Hong (1980). A good commercial [.P code
should be available.

This research could be focused on multi-criteria decision making. A more rigorous
approach to multi criteria optimization could be undertaken.

The effect of the initial tours (step 1) to the final solution of the AEIl should be
investigated and to determine which method pencrates the initial tour that leads o the best
solution in the fewcest iterations.

The time window constraints could be added into the previous FMHS maode! and studied.
These constraints represent time intervals which cach department open to pick up or deliver
loads. Both exact procedures and heuristics could he developed.

A comparison to two methods described in ilusban (1985) and other methods (if
available) could be done and finally, the computer programs developed lor the ADP and the
AEH arc not particular efficient code: certainly there are improvements which can be made in
this arca to decrease execution time. For instance, there are many methods (o solve the MTSP
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produces a better OPRM and OPRT values, while the AEH produces a better OPRD value,
which supports the results from Table | to Table 4.

Table 3 Comparisons of the OPRD values

Methods
Size Levels ADP AEH
Mean 1.16876 1.03329
20-3 S.N. 0.12955 0.03478
Min. 1.00719 1.00000
Max. 1.54362 1.22951
Mean 1.25046 1.02433
35-4 S.D. 0.16694 0.01910
Min. 1.01695 1.00000
Max. 1.87135 1.09551
Mean 1.23842 1.02354
50-5 S.D. 0.13354 0.01921
Min. 1.05263 1.06322
Max. 1.83938 1.07456

Table 4 Comparisons of the running time (sec.)

Mcthods
Size Levels ADP ALH
Mean 120.34000 70.17000
20-3 S.D. 53.09364 13.81996
Min. 35.00000 41.00000
Max. 282.00000 1 14.,00000
Mean 462.11000 318.57000
354 5.D. 193.79400 58.52738
Min. 100.00000 209.00000
Max. 072.00000 467.00000
iviean - 1190.60000 922.08000
50-5 S.0D. 577.14460 161.66910
Min. 160.00000 602.00000
Max. 3056.00000 1513.00000

Table 5 Comparisons Replication by Replication Between the ADP and the AEH

% of favorable replication by replication

Size | Method OPRM OPRT OPRD
20-3 ADP 58 100 9

AEH 29 0 91
35-4 ADP 47 100 2

AFH 43 0 98
50-5 ADP 58 100 0

AEH 34 0 100
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not be true under some cost structures, because sometimes decreasing the maximal tour may
affect the total distance. Iowever, from the previous results we can conclude that the
gencrated cost matrix has several solutions with minimum tolal distance.

Table 1 Comparisons of The OPRM Value

Methods
Size Levels ADP AEH

Muan 1.16876 1.20604

20-3 S.D. 0.12955 0.09653
Min. 1.00719 1.02273

Max. 1.51362 1,49485

Mean 1.25046 1.22834

35-4 S5 0.16694 0.09930
Min. 1.01695 [.05114

Max. 1. 87135 1.49007

Mean 1.23842 1.27608

50-5 S.D. 0.13354 0.10220
Min. 1.05263 1.06322

Max. 1.83038 1.56463

Table 2 Comparisons of The OPR1" Value
Methods
Size Levels ADP AEH

Mean 1.00087 1.16876

20-3 S.D. 0.00751 0.08476
Min. 1.00000 1.02532

Max. 1.07407 [.43750

Mcan 1.00000 1.19993

35-4 S.D. (.00000 009019
Min. 1.00000 1.04286

Max. 1.00000 150000

Mean 1.00000 1.24815

50-5 SD. (.00000 0.09429
Min. 1.00000 1.06358

Max. 1.00000 1.53425

In Tuble 3, the OPRD values of both methods are compared. The resulis show that the
AEH produces a solution with a smaller {on average)} deviation. This results support the fact
the AEH reduces the maximal tour by increasing the length of the minimal tour or some
remaining tours.

In Table 4, a comparison of running time is studied. It appears that the ALCII produce a
good solution more quickly. This is especially true when the problem is large.

Another compariscn between both methods is shown in table 5 which compares the
result among objectives replication by replication and shows the relative performance
measured in each size level, Charnsethikul {1986) used the sign-test (see Conover (1971)) in
Table 5 to test whether the ADP is preferred to the AEH and the conclusion is that the ADP
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4. Computational Experiences

To evaluate bath algorithms in the previous chapter, 100 replications with three different
size levels of the FMHS routing problem from the experimentation of Blair, Charnsethikul and
Vasquez (1985) were uscd. This data set was generated by using the random number generator
of the 'I'l Basic language. The data input consists of the distance matrix among departments in
the system and a list of jobs which contains the origin and destination of each job. The cost
matrix in each replication is gencrated by the method described in section 1.2. It is appeared
that all gencrated cost matrices are asymmetric. The size levels of the problems are 20 jobs
with 3 vehicles (level 1), 35 jobs with 4 vehicles (level IT), and 50 jobs with 5 vehicles (level
{I). Both algorithms were coded in Basic and were complied by the Microsoft Basic compiler
version 2.1 for the TI microcomputer. Evaluations of the solution in each replication contain
[our performance measurements:

1) The aptimization performance ratio of the maximal tour (OPRM) is defined as Lhe
ratio of the maximal tour at termination to a lower bound which is determined by
averaging the tour values from the solution of the MTSP in stcp 1 of the ADP. In
other word, this lower bound is calculated from dividing the total distance of the
MTSP by the number of vehicles. The actual lower bound or the exact maximal tour
is possibly greater than this approximated lower hound since the implied perfectly
balanced allocation may not be possible. The result is that the cited OPRM value can
be considered as the worst casc performance”.

2) The optimization performance ratio of the total distance (OPRT) is defined as the
ratio of the total distance at termination to the total distance of the MTSP solution in
step 1 of the ADP.

3) The optimization performance ratio of deviation among tours (OPRD) is defined as
the ratio of the maximal tour at termination to the averaged value of total distance in
each tour at termination.

4) Running time (T) is estimated in the unit of seconds.

Comparisons of performance measurements between the ADP and the AEH is
summarized from Table 1 to Table 4. In cach table, the mean valuc, the standard deviation, the
maximum and the minimum in each performance measurement of both methods in all sizes are
shown.

In Table 1, the OPRM values are compared. It is found that the ADP has a better average
OPRM value but its average standard deviation is larger. Considering the worst case
performance in the OPRM value (5ts maximum value) of the ADP to those of the AEH, we
found that the average worst case of the AEH is 51 percent comparing to 75 percent of the
ADP. Charnsethikul (1986) used a histogram to represent the distribution of the OPRM value
in each size level. He discovered an ill condition of the ADP when more than one maximal
tour occurs or the tofal distance of some other tour are close to that of the maximal tour. He
suggested some modilication of the ADP to correct this condition but the approach is costly in
total computational time.

In Table 2, a comparison of the OPRT values shows that the ADP usually produce a
better solution with respect to minimizing the total distance. This is obviously true because we
use the modified Eastman's algorithm which minimizes the total distance in each subproblem
of the ADP. In this expcriment, the OPRT value in almost every replication solved by the ADP
is equal to |. This mcans that the ADP often produces the solution with minimum total
distance and tends to minimize the maximal tour at the same time. Nevertheless, this fact may
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This solution technigue would appear w0 require a Jot of computational time for solving a
sequence of the MTSP. In tact, the algorithm uses the final cost matrix of the previous iteration
as the slarting point 1o continue searching, instead of starting at the original cost matrix again,
It does not take a long time to produce another tour when it is compared to the time spent in
step 1.

3.2 Arc Fxchanging Heuristic (AEH)

Onc of the better heuristic for the TSP is the 3-OPT procedure which was introduced
originally by Lin and Kernighan (1973}, To minimize the longest tour doration, Rlait and
Vasquez (1984) suggested a (cchnique which translers a node from the maximal tour to the
remaining tout which they refer to as "MIN-MAX KICK OUT *. AEH is a combination of the
above two methods with additional objective ol minimizing the longest deviation among tours.

The basie procedure of the 3-OPT algorithm is to find a better solution after exchanging
three arcs [rom the old tour. There arc many rules 10 select these three arcs. la this case, the
seleetion rule is based on a node exchanging procedure start with u feasible tour. Let arcs {(u,h3,
{e.dd), (e, f) be arcs in a feasible tour where arc (7, /) means that point j immediately follows
pornt /. Consider the substitation the three new arcs of (ad), (c. /), (¢,b) 10 the previous tour,
The new total cost of the objective function is caleulated. The method of enumeration is used
to select these three ares from among # arcs. where n equals the tofal arcs in the old tour, There
are p{n-1)(n-2)/6 possible sets of three arcs to be substituted ino the old tour. Whenever any
improvement is found. the procedure starts again and stop when noe improvement occurs. Since
there are several way to exchange three arcs, there may be other modification which could
produce a better solution than the method prescnted.

To satisfy balancing workloads, our objective function is to minimize the longest tour
and the longest deviation among tours instead of the total distance. An additional heuristic
which is added to the 3-OPT procedure is to select the maximal tour irst and then the minimal
tour to perforin the 3-OPT procedure for all possible combinations. If there is no improvement,
the provess will continue searching by applving the 3-OPT procedure to all tours. It is obvious
to see that this heuristic tends to minimize the range among tours and minimize the maximal
tour regardless of the total distance.

To simplity the above idea, the new heuristic method can be deseribed as follows.

Step 1. Find a feasible solution for the MTSP.
Step 20 Identify the minimal tour and 1hie maximal tour.,

Step 3. Apply the 3-OPT procedure to the tours i step 2. 1 no improvement in the

maximal tour has been found, go to step 4, otherwise go to step 2.

L.

Step 4. Apply the 3-OFT procedure to all tours.

A

If no improvement in the maximal tour has been found in step 4, stop and print
the best solution found, otherwise. go to step 2.

Step

This algorithm consists of two phases.  In the first phase, the minimal tour and the
maximal wour are identified in step 2 afler an overall tour was found. The 3-Q1T procedure
used i step 3 tends to decrease the maximal tour and inercase the miniimal tour. The second
phase uses the 3-OP1 procedure in step 4 to decrease the maximal tour and increase some of

the remaining tours when no improvement is found in step 3.
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In recent vears, a pood deal of work has been donc in the development of heuristic
programs for solving large combinatosial problems. According to the definition from Weist
(1977) a heuristic is a method of reducing the search in a problem solving situation as an aid to
the discovery of a solution. The phrase "rule of thumb" often is used synonymously with
"heuristic”. In other words, a collection of rules of thumb for solving a particular problem is
called a heuristic program. If sufficiently complex, such a program may require a computer for
its solution. 1leuristic programs for the MTSP with balancing workloads can be scparated into
two forms:

1) Arc Deleting Procedure(ADP): this attempts to reduce the longest tour and maintain
minimization of the total distance.

2) Arc Exchanging Heuristic(AEIT): this attempts to reduce the fongest tour and the
longest deviation among tours.

3.1 An Arc Deleting Procedure (ADP)

The ADP is an appropriaic modification to Lastman's algorithm. For the MTSP,
Eastman's algorithm has some advantages over Little's algorithim. For instance, there is no
difference in the level of branching or fathoming between solving the MTSP and the TSP
using Little’s algorithm, because the algorithm treats the MTSP the samc as the TSP (an
illustration is in Dean & White (1975)). Eastman's algorithm has a difference rule to fathom an
active node; it considers whether the tour is feasible or not for the MTSP. For example,
consider a problem with five nodes and two vehicles. Suppose that the solution from the
assignment problem is 6-1-2-6, and 7-3-5-4-7, where 6,7 represent the starting peint of cach
vehicle. This tour is feasibie for the MTSP, but it is not feasible for the TSP. If we solve the
MTSP by Lastman's algorithm and use its rule for solving the TSP, we have to continue
branching and searching for the solution of the TSP. In fact, we already have the optimum tour
in the first step. This was illustrated by Svestka and Huckfeldt (1973) when they modified this
rule to Eastman's algorithm. The results showed that solving the MTSP usually required fewer
steps than solving the TSP,

To satisfy balancing workloads, a heuristic technique is applied to the problem of
minimum total distance solved by the method as described in the previous paragraph. This
heuristic is called the "arc deleting procedure”. The main goal is to reduce the maximal tour.
The procedure deletes cach link (i, /) where (i, /) is a sequence of node in the maximal tour, by
assigning CU (cost of traveling from node 7 to node j) equal to infinity, and the MTSP

carresponding to each deletion of link (i, ) is solved. Suppose there are k arcs contained in the
maximal tour, thus producing the new k solutions. We sclect the best improvement to continue
searching in the same way until no improvement is found.

From the previous procedure, the algorithm can be described as follows,

Step |. Solve the MTSP by Eastman's algorithm with the modificd rule of recognizing
subtours from the '1'SP as feasible tours of the MTSP.

Step 2. From the solution in step 1 or 3, select the produced maximal tour and start to
delete each link (i, /) in that tour and resolve the MTSP corresponding to each
deletion of (4, j).

Step 3. Hf there is no improvement in the maximal tour from step 2, stop and print the
best solution, otherwise, select the best improvement as the solution and go to
step 2.



Smith (1980) compared results produced by Fastman's algorithm to those of Held and
Karp and showed that Fastman's algorithm is better when the cost matrix is asymrnetrical.

Balas and Christofides (1981) form Lagrangian relaxation of the TSP by moving
appropriate subtour climination constraints to the obiective function and devetop a branch and
bound scheme by solving a sequence of the assignment problem. !t is appeared that this
method is the best known for asymmetric problems.

Lin and Kernighan (1973) proposed an effective heuristic procedure for the TSP. The
general concept is to transfer arcs which are not included in the previous tour into a new tour
by exchanging nodes. They presented several algorithms 1o show methods which can be used
to generate a set of tours from an available tour. A method which is widely used is the 3-OPT
procedure. The process is to choose three arcs out of the old tour and find three new arcs to
replace them. Several new tours are gencrated (depend on how many possible three arc sets
from the old tour can be chosen). An objective function must be evaluated and the process
stops when all new tours show no improvement in the objective value. Otherwise, a tour with
improvement is chosen to start the process again. They also presented an additional algorithm
to decide at each iteration how many branches to exchange instead of using three branches.

Stewart and Golden (1984) modified the iden of Lin and Kernighan with Lagrangian
relaxation to the general VRP by moving the capacity constraints to the objective funciion. The
remaining constraints of the probiem constitule the MTSP. The capacity constraints are
multiplied by a set of Lagrange multiplier. An initial value for the Lagrange multipliers must
be given and the 3-OPT proccdure is applied to solve the MTSP with the new objeciive, They
presented an algorithm to adjust the Lagrange multiplier in order to obtain an improved
solution.

Dean and White (1975) studied balancing workloads in machine scheduling with the
approach of a modified Little's algorithm. The procedure is to continue searching until the best
solution with the best balance is found (mcasured as minimum range}. Compulational results
of some small problems were reporied.

Blair and Vasquez (1984) proposed a heuristic which is based on a node exchanging
procedure which trunsfer a node in the maximal tour to the remaining tours in order to
minimize the longest tour and the total distance. An application of this method was made (o
solve the VRP in a Tlexible Material Handling System (FMHS). They assumed (hat all
vehicles carried a single unit load at the (ime they passed through a sequence of jobs, so the
VRP becomes the MISP. later, Blair, Charnsethikul and Vasquez (1985) developed an
alternative stopping rule and a different rule for node selection in the maximal tour which is
transferred to the remaining tour. The algorithm was tested at (hree levels of 15 nodes and 3
vehicles, 35 nodes and 4 vehicles, and 50 nodes and 5 vehicles. One hundred replications were
generated at cach level.

Husban (1985) formulated the problem of minimizing the maximal tour of the MTSP ay
an integer lincar program and solved it using a branch and bound technique similar to that of
Dean and White (1975) for small problems. He also formulated the VRP in the FMHS as a
transportation problem by an arc covering approach. Two new heuristic methods were
developed. The first heuristic is based on a node covering approach, while the latter henristic s
based on an arc covering method. e reported some numerical expericnce using the samg
lower bound developed in Blair and Vasquez (1984) to measure the performance of both
heuristics.

3. Solution Techniques
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distance traveled from department 2 (the starting location of vehicle 1) to departiment 2 (the
starting location of job 2), and cnded at department 3 which is the destination of job 2 { Cgp =

£(2,2) + #2,3)). Similarly, other c(i, /) can be computed. The additional number ("6" and "7")
used in this formulation is similar to the one described in Gorenstein (1970) which is used to
represent the MTST. Usually, they are called "Dummy Salesman (Vehicles)”. This formulation
converts the MTSP to the TSP which scveral algorithims are available. Modifications of this
formulation can also be found in Dean and White (1975) and Svestka and Huckfeldt (1973).

A brief review of existing the TSP and the MTSP is given in section 2. Solution
technigues and computational experiences are discussed in scetion 3 and 4 respectively. Some
conclusions and comments about extensions to this research are presented in section 5.

2. Revicw of The TSP and The MTSDP

The TSP has received much atlention since 1950. A good survey of theoretical results,
solution techniques and applications was presented in Bellmore and Nemhauser (1973), Lawler
et al. (1985) and Parker and Rardin (1983).

Grotschel (1980) demonstrated how knowledge of the facets of the polytope associated
with the symmetric TSP can be utilized to solve the large scale TSP. In particular, he reported
how the shortest round trip through 120 German cities was found by using a commercial linear
programming code and adding facetial cutting plancs in an interactive way.

Little's algorithm (1963) is a branch and bound method. The set of all tours (feasible
solutions) is broken up into increasingly smaller subscts by a procedure called branching. For
each subsct, 1 lower hound on the fength of the tours therein is calculated. Eventually, a subset
is found that contains a single tour whose length is less than or equal 1o some lower bound for
every tour.

Eastman's algorithm (1958) is also a branch and bound method. The branchiny process is
considered from the subtour elimination constraints. Bellmore and Malone (1971) reported
some computational experiences and statistical analysis in both symmetrical and asymmetrical
cases.

Gorenstein (1970) gave a tormulation of the MTSP as a TSP by adding row and column
for each additional tour (salcsman) and set the cost coefficient to infinity for linking pairs of
these added rows and columns. The cost cocfticient of linking pairs between these added rows
and columns to the rows and columns in the original cost matrix must be given. Ile used the
MTSP (o schedule a printing press for a periodical with scveral editions in order to minimize
the sequence dependent setup costs. He proved that the solution 1o the MTSP can be obtained
from the solution to a TSP willh Af home visits. This permits the use of any wcthod in the TSP
to solve the MTSP by allowing a tour with M home visits to be a feasible tour.

Svestka and Huckfeldt (1973) gave another formulation of the MTSP as the TSP. They
proposed (he idea of augmenting the cost matrix which was almost the same as that shown in
Gorenstein (1980). The algorithm of Bellmore and Malonc is used to solve the MTSP with the
additional idea of gencrating an initial tour to be used as an upper bound of the solution. This
idea helps to reduce computational time in some cases. They also found that the inclusion of
additional salesman can reduce the total computation to a fraction of the time of the one
salesman case. For large problems, this method still increascs exponentially as the number of
cities grows, but the ratc of increase is lower than that of Littlé's algorithm.

Held and Karp (1970,1971) proposed another branch and bound method to solve the
symmetric TSP by using the solution from the minimum spanning tree associated with the
“From-To" matrix to provide the lower bound and combining concepts of subgradient
optimization and Lagrangian relaxation to solve the TSPina dual Torm.
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tormulated and sotved by an integer programming code, but the running time is costly and
there are some problems of roundoft ercor and crror propagation when the problem is large.
This approach is not appropriate in the case of this application.

1.2 Material Handling Systems {An MDMTSI Formulation)

An area of application in this research is the problem of determining the optimal path of
automated guided vehicles to support a flexible material handling system (FMHS). From Blair
and Vasquez (1984), the problem can be described as follows.

Given a set of jobs J, represented by an origin from which the job must originate, a
destination at which the job must terminate, and a mairix of distances among departments in
the system, the objective is to ind an altocation of jobs to tours which both minimizes and
balances the distance which cach vehicle must travel. It is assumed that each vehicle carries a
single unit foad al a time as they pass through a sequence of jobs,

Te provide a more mathematical description of the travel cost (y in section T4t is
necessary to detine additional notation.

Let. ] —={(a( /), d( /3)} denote the set of ordered pairs (jobs) with the clement / defined by
the job origin o j) and the jobs destination d( /), 7 = 1...., N. Let 7' — [i(i, /)] denote the matrix
of dislances between department pairs.

The "cost” for job j to follow job i in some tour is:

Cp= Mol d( )+ 0D o)) i) = L Nand i £ (10)
= Ho(i-Ny, o) + Ho( ), d(j))  i=N+1. N+AM -1 N (1D
-9 P=l NN+ N+M (12
= w LN+ N+ M (13)
= i=jig=1, Nt M (14)

where

(10) represents the distance from the destination of jeb 7 to the destination of job 4,

(11) represents the distance from the initial depot of vehicle £-A (o the destination of job
5

(12) represents the indifference to the ending point which aliows all vehicles to stop at
the last destination;

(13) represents the fact that all vehicles are used to perform at least cne job; and

(14} represents the fact of the I'5P that job / can not be performed twice in the sequence
of operations.

An example of formulating the cost matrix of the FMHS is as follows. A sct of job
consists of 5 jobs of 1(2,1), 2(2.3}. 3(1.5), 4(4.2) and 5(4,5) where &/, /) represents the starting
department (/) and the destination department ( /) of each job k and ihe 7 matrix s given.
Suppose there are two vehicles located at departments 2 and 3. Let numbers "6" and "7"
represent the starting points of both vehicles which are located at departmens 2 and 3
respectively. Suppose we want to compute ¢(4,5), which means the distance traveled from job
4 to job 5. From the given data, job 4 is ended at department 2, and job 5 is started at
department 41 and ended at department 3, 50 the total distance traveled is the distance traveled
from department 2 to department 4 and from department 4 te department 5, which can be
written as Cys = #(2,4)144,5). Another example 1s to compute (42 which means the total

distance traveled from the starting focation of vebicie T to job 20 The wial distance s the
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efficicnt heuristic which solves the MDMTSP and produces solutions which are close 1o the
optimal solution of cach individual objective.

1.1 An Integer Programming Foermulation
The basic mathematical formulation for the MDMTSP with all balancing criteria is an
integer program with multiple objectives.

Z, -~ MinT (1)
Z, = Min 2., Xy, L= o, NeM, k= Vs M (2)
ik
Z, ~Min D 3)
Subject to 7o qu X:}'k \ k=1, M (4)
)
D > ABS[T(LL) - T(L2)], AEYY) (5)
where T(L) = ZCU X!;hr . I=1,.. M
-
>oX, -1 j=1,.., N¢M (6)
ik
DX, =1 i= 1, M (7)
Jk
D Ky~ 2 X =0, Bl NM, k=1, M (8)
i J
U, U, +(M+N)2 X< MEN-1,  0j=Lo, NeM, i) ©)
k

Xy = 0,1 for all i, j, k, U, are positive integers for all i where

(1 if link i,/ is included in tour &,
# 7| otherwise

(', represents the traveling distance from location i 10 location f;
I(L) represents the traveling distance for tour £;

7 represents the tota) distance traveled in the maximal tour;
D represents the maximal difference among allocation of distance traveled for cach
{our;

U, represents a vector of positive integer values which gives a sct of subtour
elimination constraints in constraint {9);

M represents the number of tours or salesmen or vehicles; and
N represents the number of locations to be visited.

Also, (1),(2).(3) denote objective Munctions of minimizing the maximal tour, minimizing
the total distance and minimizing the largest deviation respectively; (4),(5) ensure that T and D
represent the maximal tour and the maximal deviation respectively; (6),(7) ensure that cach
point is visiled by one and only one vehicle; (8) represents roule continuity; and (9) represents
subtour climination constraints.

Duc to the combinatorial nature and complexity of multiple objectives in the above
model, there is no computationally feasible exact procedure availuble. A goal program may be



