sETsmaLUSsmaand UR 37 atiun 2 wnsu - Ngungy 2540 39

Rattakorn Poonsap and Wiltaya Watcharawittayakul

1. Introduction

Presently, human factor has bcen considered important in designing computer
systems. Specifically, man-machine interface is no longer the last job in devcloping
software. Usage of computers has grown dramatically in laboratories, offices, and homes.
Studies of user interface can be done for both hardware and software, Hardware cngineers
may explore keyboard design, graphic displays, pointing deviees, and voice recognition,
whercas software developers may be interested In screen design, menu selection
techniques, natural langnage processing, and visual programmung,

Tnleractive software can use various techniques to build user interface; e.g. multiple
displayed windows and pull-down menus. All of them base on the model of human-
computer interaction [Norm84]. In this model, one foliows 4 stages to accomplish a task;
namely, forming the goal or intention, reviewing possible aclions, selecting the most
appropriate one, executing the selected action, and evalnating the outcome.

Task-orented user interface must help users get therr jobs done without confusing
them with programming language syntax. The study of human-computer intcraction 1%
inter-disciplinary and involves many areas: €.p. computer scicnce, Cognitive science,
psychology, and ergonomics.

This paper presents a form-based Application Generating sottware called Fagen. In
seneral, Fagen will generate menu and dialog driven application programs. For software
development, one must construct 3 building blocks: the user interface, database, and data
PrOCCssing Programs. Currently, database manipulation 18 supported by database
management system (DBMS), whereas the user interface and data processing programs
are usually implcmented by programming languages. Although user interface and
application program generators cxist, they are primanly wsed for prototyping because the
generated codes are inefficient. Furthermore, these tools are usually integrated as a single
system which is difficult to link to others.

The devclopment of Fagen has atterpted to eliminate the gap by automating the
user interface implementation. Consequently, the development life cycle can be shortened
significantly. Furthermore, Fugen also provides data processing functions via 1is pre-
defined database operations.

Presentations of this paper arc as follows. Section two describes the motivation,
goal, and methodology of the research. Section three bricfly outlines the software
requirement. I'agen archatecture (ollows in section four, whercas section five explains the

* Instructor, School of Applied Statistics, National Institute of Development Administration
Vice president, Stock Exchange of Thailand

40 Fagen ! A Form-hased Application Generalor

idea of description lunguages for various forms. Section six illustrates how o user Fagen
to develop applicaticons, I'inaily, scetion seven presents the future work and conclusion.

2, Motivation, Goal, and Methodology

In 1992, the Thai computer market was worth more than 16 billion baht. Software
shared about 25 percent of this amount. The share continually increases as hardware cost
drops. Combining with telecommunication, the hardware market is the largest among
cleetronic industry. All these equipment's require controls by software.

For computer hardware, the workstation murket grows flastest, whereas that of
personal computers follows. In the COMING years, as price-performance ratio improves, the
2 markets will combine, All thesc cornputers necd at least a few software. First an
operating system is required. Then other software is installed depending on applications.

In Thailand, ncarly all softwar packages arc imported. This may not seem serious
because of the lack of the software copy right law. However, toward globalization. the law
will be passed. The luss of revenuc due to these so called pirate software packages was
estimated to be over | billion baht in 1990,

The price advantage of piratc software has a negattve etfect on local software
indusiry, The growth is slow and in the fong term the country can be far behind in
software development technology. According to the Department of Commercial
Registration, the number of software companies was close ta 100 in 1991, This number is
far less than those in other newly industrialized countries; e.g. 300 in Taiwan and 700 in
South Korca.

Considering the very large software market, we nced to have our own software
products, both for internal use and export. Unlike other clectronic sectors, the knowledge
for sofiware development is well-known. Cnly expericnce to deal with large software
projects 1y needed to stay competitive in the market,

For software, two markets can be classified. First is the front-end market where
applications operate. Apart from tailor-made software, these software packages includes
office aulomation (word processor and spreadsheet), data communication, accounting
System, computer aided design, statistical package, etc. The back-end market mcludes
products like software development tools (cornpilers, DBMS, uiilities), graphics libraries,
and operating systems.

The dircction for Thailand should be in the front-end market where customized
preducts are needed. Experience from developing these products should bring the industry
toward more gencric applications and back-end products. Most customized and tailor-
made software is for form-based data processing applications. To develop this kind of
softwure, one needs to know software development steps and project management. Within
the software developmenl steps, detining and creating user interface is probably the most
important factor to determine the success or {ailure of the products.

Currenily, most form-hased application development touls on microcomputers: e.g.
Dbase and Foxbase, include components allowing designers to construct the user
interface. However, most are limited and still necd programiming cffort to create menus
and dialogues in the program code. This method is nol (lexible and may cause ditticulty
debugging. Although the mentioned products also provide automatic menu and dialog
generalors, they are integrated as a single system that cannot work across products.

ar o n' ud nl
S ENSHRIHLSISAERT UN 37 D

This research is to develop a form-based application cenerating software so as 10
separate uscr interface part from the data processing part. The advantages to do this are:

1) Software developers can concentrate on scparate designs for user intcrface and
data processing.

2} The user interface program is independent [rom the application program.

3) For software prototyping, the user interface part can be created and agreed upon
early in the project.

4) Tt is casy to maodily, maintain, and manage.

5) To estublish the standard for user interface development.

It is expected that this software will become beneficial to software developers as a
tool to help develop the significant component of any software packages. The tirne saved
from the development cycle and the improved quality of products should justify the study
andl investment of this research project.

The C programming language is chosen to implement the system. Part of it will be
implemented as library so as to be portable and able to link to other progranuming
jangnages. The system 18 developed using the exploratory approach. Initially a small
workable system is developed. Improvement and more functionality are gradualiy
included in the system as more experience is gained from rcview and usage. The
exploratory approach prevents us from laying down the dctail requirement and
specification at the beginning when there are too many constraints, alternatives, and
chteria. TFurthermore, we consider the system not a typical application to which 4
conventional developing approach s applicable.

3, Software Requirement

Users must be able to define menus, dialogs, and tables as text files. These fites will
cerve as data to the generator for generaling C code. Description languages arc designed
for describing menus, dialogs, tables, and database. Furthermore, 1 front-end software will
be built to permit designers to draw their menus, dialogs, and tables directly on screen and
trunslate the drawings into the description languages.

For menus, three types can be defined. They are horizontal menus, vertical menus,
and pull-down menus. These menus stay at specified iocations on the screen. A menu
shows pre-defined texts Lhat represent choices of actions.

Beside menus, users can also define dialog boxes, look-up tables, and databasc
terface. A dialog box scrves as a form tor data entry. Users should be able to define the
format and data type of each field. A Took-up table is a list of items that can be selected to
fill in a ficld of a dialog box. This wili minimize memorization for the end users. Database
interface is a way Lo specify the relationship between the database and a dialog box and
table. This will help contro} grouping of database components and functions. The database
interface must be general cnough to allow designers to select any data management
software; e.g. DBMS or conventional file managemaent.

12 Fagen : A Form-based Application Gencrator

The design will try to cxplore object oriented design style because preliminary
study shows that the system can be viewed naturally as collection of objccts; e.g. menus,
tablcs, and dialog boxes.

4. System Architecture

Figure 1 shows the architecture of Fagen. The system was implemented as four
laycrs, Each layer provides fundamental functions for the above laycr; ie., higher
abstraction that is casy to use and maintain.

r apphcation (trigger function in C language) |
i 4

Tlriggﬂr number ‘trigger nurnber
| ’ | . .
"" dialog management |

NFS |
I | _ i —
NFS + data

INCni
management dﬂt_ﬂ *

| H '
| table mmageumnll"—da 3 global data ‘ |
— i |

layer 3

AT |

—_— . . ‘

A |

me:nu spm:% dialog spec.+

Y
i filc manager |
Wlﬂdﬂw_spl: ir*IIjI_I[SPE% | ?dﬂ.tﬂ | ﬂ]u g’pﬂ% *dﬂla e | .

llah]ﬁ spec. *cunlrul spec. oo

confrol spec,

r

‘ winduw manager

Xy
s
v
=y
k-2

—_ - —_—

1 display ~~ keyboardand |

- database enginc
management| |_mouse management

—

—_— - - ———

Figure 1. Architecture of the menu genCrator

Two components are al the lowest level. First is the basic I/O support that interacts
with users via the display, key board, and mouse. Second is the databuase engine that
supparts data munagement. Above the basic IO support 1s the window manager that
supports multiple window management. similarly, above the database engine is the file
manager that should present a unified access method for any database enginc. The third
layer 1s the menu, dialog, and tabic management. All three components communicate with
the window manager 1o set up parts of the screen as working arcas called windows. The
dialog and table management also interacts with the file manager to interrogate data rom
the databasc.

The highest layer consists of routines (C functions) that are application-specific.
These routines are called trigger functions. From a menu or a dizlog, application may need
some actions for responding to some specific tnput. These actions will be implemented as
C functions and each has a number, called a tri gger number, associated with it. From the
menu and dialog management, conirol can be passed to a trigger function by using itg
trigger number. Generally, trigger funclions serve as « back door of the menu generator.

DO R - L L T S T

=" = Lr -ul we o =
sasadEenand I 37 atiufi 2wy - il 2540 43

Generally, the menu management provides choices of functions for user’s selection.
The dialog management provides a two-way communication between application program
and users. General usage of dialog is for data entry, and databasc viewing. Finally, the
table management offers a mechanism to Tist data from the database. The purposc Is 1o
cerve as a memorandum for data entry,

5. Description Languages

Four description languages are designed to describe ment, dialog, table, and
database. Each menu, dialog, and table description is kept 1n a text file, whercas the
database description is stored in many (ext files. These text files can be created and
modified by any text editor. For an application, these files must exist af run time because
Fugen will read them for building its internal data structures. The approach may be
inefficient but is flexible for modifying description files without recompiling the whole
application.

{ MDF = frame + {item]

frame = title + no_of iten + menu_type + lop_torner + bottom_corner +
border_type + title_style + ritle_position + title_atir + ment_before_func +
shadow + border_attr + backgro und + text_any + sel_char_attr +
non_select_item_alir + bar_artr

title = character string {* menu title */

no_of _item=1..23 /# number of selectable items */

na i

20, item = [tem_position + [tem_name + quick_sel_char + unique_tagid +
feature_mask + item sel_func + before_item _func + after_item_func + help_num
+ action + {|file_name | commund))

Figure 2. Definition of Menu Description Language

Since the syntax and meaning of each description language 3s {engthy, only some
parts of the menu description language 18 presented. The rest iv similar and can be found
in [PoWa93]. Figure 5 shows the definition of the menu description language. The
notation explaining the language follows that of [Your89)] for defining, data dictionary.
The symbols used and theit meaning are:

Non-terminal identifiers: i.e. those that must he defined further, are shown n italic
face, whureas terminal identitiers arc <hown in normal face. Note that the description
language is a list of attribules the positions of which determine their meaning.

The description is listed in components, cach of which is numbered accordingly. An
MDF (Menu Description File) consists of 4 frame {component 1 10 19) and many irems

44 lag

(from coraponent 20). Frame describes the appearance of the window opening for the
menu, whereas items correspond to choices within the menu,

Symbol Meaning
= 18 compaosed of
+ and
() optional
{1} iteration
[] select one of several alternatives

f*..* comment
| separates alternatives in the [] construct.

A frame containing the meny g bounded hy a rectanglc whose top-left and bottom-
right corners are described by top corner and bottom_corner respectivel y. These positions
are the row and column posilions in the text mode. Border type significs various border
[ine styles; e.g. single or doublc line, of any color (horder_attr). The window may appear
(0 have depth by the shadow attribute. Backeround specifies the color of the window
background area. Tirle is a text string serving as the header of the menu, {itle arr
specified its color. Its position is specitical by tirle_position which locates it at erther the
left top, center top, or right top of the menu. Title_style allows it to be at or below the top
border line,

No_of _item specifies the number of choices in the menu. Hence, ftem must lerate
this namber of times. Descri ption from component 20 is used to characterize an item. This
must be repeated as many s the number of frems in the meny General item attributes
include its position (trem_position), texi description (tterm_name), the quick seloction
character {quick _sel char), help message upon request (help_num), and before and after
sclection aclions (before item June and after_item Junc), When an item is selecled,
action specifies what the application will do. Tt can be no action, calling a C function
(ttem_sel_func as trigger number}, executing another program, making a system call. or
activate another form.

Description languages for dralog, look-up table and database are srmilar to thal for
menit. Specifically, the dialog description language is (he most complex onc since it needs
Interactions to the database. One uses dialogs for data entry and information retrieval. A
dialog consists of one or more related blocks, The concept of related blocks resulis
directly from rnany data processing applications where accessing one file requires
accessmg more detail from other files; e.g. retrieving a purchase order record form the
purchase order master file nceds retricving detail item records related to the purchase
order from the detail order file. In the exampie, the purchase order record may be
displuyed in one block, whereas its detail is displayed in the other. Chanyging the order
record identificr (key ficld} in the (ormer block should automatically reflect the detail
change in the latter block.

A block may tie to one or more tiles in the databasc. All the files associaled with a
dialog constitute a File System File {(FSF). Hence, each dialog is served by one FSF. In 2
FSF, onc is calied the biock master file. A block master file is the filc that can be both
read and written. Other files can only be read.

(R --‘Hr‘u';hgﬁ,a.m.au-!!.t.:..e-lw.-_' e e s s TS S e ke, . I L i T P _ - - L s Y

s sWamUEIsmaEnd IR 37 atui 2wy - ANl 2540 45

A block consists of fields and static texts. A ficld 1s a place where data must be
filled in etther from the user, file, system, or combination of other fields. Stalic texts are
just description that appears as prompts o the user.

6. How to Use Fagen

Figure 3 shows the Fagen environment from the end-user perspective. From this
perspective, users view Fagen as 2 components: the menu free editor and the application
generator. The menu tree editor is the front-end that interacts with the users. It allows
nsers to draw their applications araphically. Specifically, an application is a tree a node of
which is a menu or a dialog. Links in the tree represent its control [Tow structure.

An application can be incrementally built nsing the menu (ree editor. Partial work
will be saved as graphical representation and description files, When the work 1s done, all
description files will be uscd by the application generator to creafte the cxecutable
program. Data processing and database accesses can be specified when a node is created;
i & associated with a menu item or a dialog field. Thesc operations can be implemented by
using Fagen built-in functions or as trigger functions i €.

i o
e —— | trigqrer
! T fucsions:
US&ers A | _
""-.___‘_‘_ _'___ﬂ___.-" .::__ _‘—_:._}
‘ wmerl Lres | | ap;;.uiin:aticm1
| edltor ‘ | generotor ‘
\ i H"H__
A HH\“‘&
\ o N
/ P ™~
-_.l'
ol T - T [i_ . A
L daceriptivcn flles
gravhicical - | B . evaruraThile
‘ o . ‘ far mrnes, dialog, ATOgTa
rapyFLrtation - [
B - rablie, and datnhas% l
|- o - > b o

- -— - L —_—_ —_—
—— —_ T — —_— - —_— . i

Figure 3. Fagen from the End-user Point of View

The menu editor is a window-based cnvironment that is easy to use. Graphical uscr
interface techniques are exploited to transtorm the application domain to the complex
syntax of description langnages. Experienced users who require more flexibility can
bypass the menu tree editor and create the description janguages directly by using uny text
¢ditor.

Gencrally after the requircment and specification phase, designers commence
designing the softwarc structare. For form-based applications, the developing steps are as
follow:

1} Designing the database structure.

2) Designing the menu tree.

Gen

erator

3} Designing the detail of each menu and dialog,
4) Coding prosram.

Step 1, 2 and 3 can be done by using the menu tree editor, whereas step 4 is
antomatically done by the application generator. An example of details of these steps can
bc found in [PoWa%3].

7. Conclusion and Future Work

In this paper, a form-based application generating software is presented, The
function of the software is to help automate development of menu and dialog driven
applications. In the proposed environment, one will be able 1o create applications by first
building its menu tree. This tree serves as a control-guidance in the application. A menu
tree consists of nodes and links. A node represents a menu or a dialog, whereas a link
specifies a control path, Both menus and dialogs become dala to the application program
instead of embcedded code in it Consequently, the user-interface part and the data-
Processing part are separated in an application. Ience, a user-interface prototype can be
rapidly created and evaluated. Beside user-inlerface prototyping, the systemn also supports
data processing via trigger functions and database accesses, For an end-uscr action; e.g.,
menu selection or specific deteeled key press, the system can perform an associated pre-
defined C function or database operation. Specilically, a database operation can be linked
to each field in a dialog.

Fresently, the languagce description rccognizers for menu, dialog, table, and
database and the application generator are complete. The interface to a database engine!
15 also complele. With all these components, form-based applications can be developed.

The remaining work is to develop lhe front-end that permits users to graphically
create the menu tree and fill in details of each menu, dialog, and table. This front-cnd
should transform graphical representation to the description languages. The Microsolt
Windows environment has been chosen to implement the front-end. Future work should
also include designing a unifarm or standard Interface to any database engine andl
developing a report generator.

Fmally in the perspective, we have observed {he market sitation of similar
software. Apart from thosc high-ended integrated database systems, only a few data
management software on the personal computer platform are available with menu
generating capability, The trend toward this direction is undoubtedly obvious. Automatic
graphical uscr-interface is a necessity at the front, whercas client-server with standard
data managemcnt interface is mandatory it the back.

REFERENCES

D.A. Norman. 1984, Srages and Levels in Human-machine Interaction. Intl, Journal of
Man-Machine Studics 21 : 365-375.

R. Poonsap and W. Watcharawittayakul. 1993, A Software for Menn Generator.
Progress Report submitted to the Research Promotion Commuttee, National Tnstitute
of Development Administration.

E. Yourdon,. 1989. Modern Structured Analysis. Prentice-Hall, Tnc.

i the project, the Paradox engine was selected.

